"Seeing" Biological Polymers with X-Rays in Solution

Alexandra M. Deaconescu Quantitative Biology Bootcamp Brandeis University January 2013

How can we "see" biological polymers?

(ATOMIC or NEAR-ATOMIC) STRUCTURE DETERMINATION TECHNIQUES

- X-ray, neutron and electron crystallography
- Nuclear magnetic resonance (NMR)
- Cryo-electron microscopy (EM)
- Small-angle X-ray scattering (SAXS)

Why Is It Important to See

Biological Assemblies and Polymers?

Structure Dictates Function

http://www.brianjford.com/wav-spf.htm

Antony van Leeuwenhoek, 1678

1674 The Infusoria - (Protist class in modern Zoology)

1676 The Bacteria (Genus Selenomonas - crescent shaped bacteria from human mouth) 1677 The Spermatozoa

1682 The banded pattern of muscular fibers

Structure Dictates Function: Bacterial

OM

The Electromagnetic Spectrum

Synchrotron radiation

Electrons, Neutrons or X-rays?

d ~ Wavelength

- Electrons (diffraction, EM) \rightarrow Coulombic potential maps (λ =pm at 200kV)
- **X-rays** wavelengths (diffraction and SAXS): typically 0.8-1.5Å
 - interact with electron cloud \rightarrow electron density maps
 - can take advantage of anomalous scattering
 - many synchroton beamlines
 - (relatively) easy sample preparation
- Neutrons (diffraction and SANS) -> neutron density maps (λ=4-20Å @NIST
 - -interact with atomic nuclei
 - -generate fewer free radicals (minimal radiation damage)
 - -very few beamlines (ESRF) and relatively weak and costly
 - -low signal to noise ratio
 - -more difficult sample preparation (deuteration)

What Can SAXS Do?

- Structure of metal alloys, synthetic polymers, emulsions, porous materials, nanoparticles, **biological macromolecules**
- Works in solution under close-to-physiological conditions
- Measures shape and sizes
- Short response time
- Ideal for testing environmental parameters (pH, temperature, salt concentration, presence of ligands and cofactors)

Why Choose SAXS (or not)?

- No need for crystals (X-ray crystallography)
- No need to derivatize with heavy-atoms for phases (X-ray crystallography)
- No conformational selection (X-ray crystallography)
- In solution, under close-to-physiological conditions
- No grid-specimen interaction (EM)
- No staining artifacts (EM)
- Typically faster than X-ray crystallography, NMR or EM

Modest resolution (1-3nm)

How Big is Too Big (or Vice Versa)?

- No size limitation (unlike in EM, NMR or crystallography)
- Suitable for molecules from kDa to megadaltons (nm to μm)

P. furiosus protein 8.9 kDa BID: 2HYPHP SAM-1 Riboswitch 30.1 kDa BID: 2SAMRR

30S ribosomal subunit *S. Solfataricus* ~1MDa BID: SS30SX

SAXS Development

André Guinier (1911-2000) (www.iucr.org)

- 1930s-1950s polymers, porous materials (Guinier; Fournet; Kratky)
- 1960s and 1970s biological SAXS (hardware development)
- 1990s beginning of ab initio modeling for reconstruction of 3denvelopes
- Software development: ATSAS by the group of Dmitri Svergun (EMBL)

With J. Friedel http://www.lps.u-psud.fr/spip.php?article829&lang=en

Experimental Setup

• Most hardware to generate, prepare and detect X-rays is shared with crystallography (dual purpose beamlines, e.g. Sibyls at ALS)

Tom Ellenberger, Bio 5325, wustl.edu

Experimental Setup

Sample: 1-2 mg (>0.5mg/ml) Angles = 0-5 degrees Q range: 0.001 to 0.45 Å-1 (d= μ m to nm)

Thomson (elastic) scattering

Variations on the setup

- Flow cell (capillary) instead of a simple sample chambers
 minimize radiation damage
- Flow cell may be in-line with SEC

SAXS versus X-ray Crystallography

- Tumbling molecules
- Radially symmetric (isotropic)
- Low SNR
- Few observations/parameter
- (underdetermined)

Putnam et al., Q Rev. Biophysics (2007)

- Molecules "frozen" in lattice
- Non-isotropic →
- Convolution of the molecular transform with the lattice
- Discrete maxima
- High SNR
- Crystal needs to be rotated
- Many observations/parameter to be refined (at least at high resolution)

Anatomy of a Scattering Intensity Curve

- radially-average intensity distribution to obtain 1-d curve, I(q)
- I is a function of momentum transfer $q=4\pi sin\Theta/\lambda$ (Å⁻¹) or directional momentum change that photons undergo
- Normalization (against exposure time, transmitted sample intensity)

q_{max}=2π/d 1/d reciprocal resolution (nominal)

After background subtraction I~ scattering of single particle averaged over all orientations

What is Being Measured?

- 1. Scattering from sample of interest (protein)
- 2. Background scattering (buffer, water, quartz cell etc.)
- 3. Electronic noise, stray X-rays (not passing through samples)

 $I(q) \sim (\rho_p - \rho_s)^2 P(q) S(q)$

Contrast Form factor (SHAPE and SIZE) Factor p=electron density

Structure factor (1 for ideal, dilute solutions)

Small-Angle Scattering is a Contrast

- The contribution of bulk solvent to scattering is explicitly subtracted out
- Background subtraction is VERY important (measure "sample" and "matching buffer" series)

SAXS is a Contrast Technique

- Proteins are made up of light atoms (low Z), which do not scatter very well (as opposed to DNA/RNA, which gives better contrast)
- typically 5% above background

 use relatively large protein concentrations (1-10mg/ml)

Scattering from an Ideal Solution

- No interaction between particles (no interparticle interference, e.g. aggregation or repulsion)
- Only one species (monodisperse)
- Particles are free to move (independent scatters)
- $I(q) = (\rho_1 \rho_s)^2 P(q) S(q)$

To a limited extent, interparticle interference can be dealt with. But, for analysis, solution has to be monodisperse.

> Best to use orthogonal methods (e.g. SEC, AU, maybe native PAGE, mass spectrometry, or best MALS-SEC) to ensure monodispersity

What Kind of Parameters Can We Extract from Scattering Curves?

A. Model independent analysis (directly from the scattering curve)

Al Kikhney, BIOSAXS http://www.embl-hamburg.de/biosaxs/courses/embo2012/

I. Forward Scattering I₀ and Molecular Masses

- $I_0 \sim (\text{electrons in the particle})^2$
- $I_0 \sim$ particle concentration
- If the particle concentration is known, measurements can be calibrated with a known monodisperse protein (e.g. glucose isomerase NOT BSA), yielding the molecular mass of the solute of interest.
- An ensemble measurement (monodispersity again!)

- Calculated by extrapolation (coincident with the direct beam)

II. Radii of Gyration – the Guinier Plot

R_g (root-mean-square distance of an object's part from the center of gravity), a function of a particle's mass distribution (size)

R_g can be calculated from the slope of the Guinier Plot (InI versus q²), but the limits of the Guinier regime is dependent on the type of shape (larger for globular objects, smaller for elongated shapes, qR_g<0.8)

Al Kikhney, BIOSAXS http://www.embl-hamburg.de/biosaxs/courses/embo2012/

Persistence Length-Folded versus Unfolded

• Kratky Plot: I(s)•s² versus s; generally bell-shaped when folded

Mertens & overgun (2010) J. Struct. Divi.

The Pair Distribution Function Atom Pair Distance Histogram

Reciprocal (Fourier) space

Real space

P(r) versusiar Rattierson Function

Tom Ellenberger, Bio 5325, wustl.edu

The Pair Distribution Function (Similar to a "Patterson" Distance)

Svergun and Koch (2003)

@Dmax=0

Oligomerization Changes Dmax and p(r)

neutrons.ornl.gov/.../Small-Angle-Scattering_SAS_V-Urban-ORNL-...

Differentiating between Crystal Packing and Oligomerization in Solution

C-terminal domain of DNA repair protein MutL Putnam et al., Q Rev. Biophysics (2007)

What kind of parameters can we extract from scattering curves?

A. Model-dependent analysis (directly from the scattering curve)

B. Model-dependent (3D-reconstruction)

3D Reconstructions by Ab Initio Simulations: How?

• 3D search model \rightarrow trial and error

 \rightarrow fit against experimental data

Dummy Atoms/Residues Assigned to Either Solvent or Model Simulated Annealing (to find "global" minimum)

NIH SAXS Workshop https://ccrod.cancer.gov/confluence/download/.../ PartTwo.pdf

3D Reconstructions by Ab Initio Simulations: How?

Constraints:

1. Packing and connectivity (3.8Å between scattering centers)

2. Symmetry (if present according to orthogonal method)

NIH SAXS Workshop https://ccrod.cancer.gov/confluence/download/.../ PartTwo.pdf

Multiple Simulations Need to Be Computed

- Reconstruction depends on initial conditions
- >10 independent simulations per sample
- Align models
- Analyze for convergence (NSD = normalized spatial discrepancy)
- Filter composite volume based on occupancy
- Find common features in your reconstructions

Solutions are Similar but Not Identical

Z-disc domains of Titin (largest known protein, 35000 amino acids) Svergun & Koch (2003)

So What Else Is It Good For?

- Validate crystal structures
- Help identify buffer conditions likely to produce crystals (non-aggregated protein)
- Locate domains and missing linkers (e.g. not visible in crystal structures)
- Look at dynamics of domains (ensemble of models, EOM and MES)

Missing domain represented by ensemble of dummy residues forming a chaincompatible model. Rigid body model + missing loop represented by ensemble of dummy residues Atomic models derived from rigid body modeling applying conformational sampling

nn, Grossman ...)

Building Larger Assemblies from Known "Pieces"

Roll-Mecak & Vale, Nature (2008)

SAXS Is Versatile, Fast and Informative

TOMORROW:

1. Coupling transcription and DNA repair with a dsDNA-tracking motor

2. Post-translational modification of tubulin by tubulin tyrosine ligase (TTL)

Acknowledgements

The Grigorieff Laboratory

Dr. Niko Grigorieff

Dr. Jeff Gelles Dr. Jané Kondev

Funding

Damon Runyon Cancer Research Foundation

